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Abstract. Shortest path query is a problem to answer the shortest path
from the origin to the destination in short time. The network is fixed,
and the goal of the study is to develop efficient data structures to speed
up the search algorithms which can be constructed in not so long time.
In this paper, we propose levelwise mesh sparsification method for con-
structing a sparse network. The shortest path can be solved in the sparse
network, thus the computation time for each query is reduced. We con-
sider regions of several sizes, and construct the sparsified network for each
region composed of edges which are parts of shortest paths of vertices
far from the region. For each query, the sparse network is constructed
by combining the sparsified networks for which the origin and the des-
tination are distant. We show that the sparsified networks are actually
very sparse compared to the original network by some computational
experiments on real road networks.

1 Introduction

The shortest path problem is a most fundamental problem in optimization and
graph algorithm. The shortest path problem has so many applications in both
theory and practice. For example, dynamic programming is basically considered
to solving the shortest path on the table, and the computation of the edit dis-
tance of two strings is reduced to the shortest path problem. In real world, car
navigation systems utilize shortest path algorithms, and Internet packet rout-
ing needs a kind of shortest path to the destination. There are more and more
applications, thus we can not list all them here. The shortest path problem can
be solved by Dijkstra’s algorithm [1] in O(m + n log n) time where n and m
are the number of vertices and edges, respectively. Recently, quasi linear time
sophisticated algorithms have been proposed [2].

The shortest path can be found in almost linear time by simple algorithms
such as Dijkstra’s algorithm. This is a big advantage for its applications. How-
ever, some recent applications have had some interesting requests to solve the
problem in shorter time; linear time is too long. For example, a car navigation
system solves the shortest path problem in a network having a huge number of
edges, such as 50 million in US road network. Perhaps Dijkstra’s algorithm often
needs few minutes but we can not wait a long time before beginning driving. In
on-line navigation services, the server system has to answer the shortest path in
quite short time, say 0.01 second. In these applications, the network does not



change frequently, but we have to answer to so many problems with different
pairs of a source vertex and a target vertex. In some sense, this is not an opti-
mization problem but a database query problem, thus we here call the problem
shortest path query.

In the recent researches on the shortest path query, preprocessing on the
network to construct a kind of data structures have been considered to help the
speeding up. Dijkstra’s algorithm starts from the source vertex and searches the
vertices in the increasing order of the distance from the source vertex. Thus, if
the target vertex is closed to the source vertex, the algorithm terminates in short
time. The central task is how to deal with distant source-target vertices.

In real world network data, we may observe that few edges are frequently
used in the shortest paths between distant vertices. Such few edges are highways
or arteries in road networks, and backbones in Web networks. So called layer
method is based on this observation. It constructs a layer network composed
only of highways and arteries as a preprocessing. When it solve the shortest path
problem, it finds the nearest vertex to the source vertex, and that to the target
vertex, then connects the vertices by the shortest path in the layer network. This
method is perhaps the most popular method in the modern car navigation sys-
tems. However, the edges in the layer network are not chosen by mathematical
way but according to their attributes, thereby we can not always obtain the op-
timal solution. Thus, one of the recent main topic is how to have data structures
for example such abstract networks without losing the optimality. In this topic
there are several studies [3–6].

One of them is a bit vector method [4]. Consider a partition of the network
into regions R1, . . . , Rq. Then, for each vertex v and region Ri, v 6∈ Ri, find all
the edges incident to v and included in the shortest path from v to a vertex in
Ri. We memorize the edges as a data structure. When we search the shortest
path from v to a vertex u in Ri, we can restrict the search to the edges. If v is
far from Ri such edges are few, thus until the current visiting vertex is closed to
the destination, the edges searched forms like a path. Therefore we can save the
computation time much.

Bit vector can be considered that it finds a structure common to shortest
paths from a vertex to the vertices in a region. On the other hand, when the
source vertex is closed to the region including the target vertex, the edges to be
visited become many, thus we need much computation time. By increasing the
number of the regions q, we can increase the efficiency instead of the increase
of memory usage. Moreover, the preprocessing essentially needs to solve the all
pairs shortest paths problem, thereby takes long time.

Bit vector method finds the common first edges of the shortest paths. In
contrast to that, highway hierarchy method [5] finds the edges common to the
middle of the shortest paths. Suppose that an edge e is included in the shortest
path from v to u, and an endpoint of e is kvth closest vertex to v, and the
other endpoint is kuth closest vertex to u. If both kv and ku are smaller than
a threshold value h, we call e highway. Highway hierarchy method constructs
the highway network composed of highway edges. When we execute Dijkstra’s
algorithm on the original network, we go to the highway network after h steps.
Highway network is usually sparse compared to the original network, thus the
computation time is shorten. Constructing the highway network on the highway
network recursively, the computation time become shorter. In contrast to the
layer method, it does not lose the optimality. Short preprocessing time is also
an advantage of this method.



The third method is transit node routing [6]. In the preprocessing phase it
selects the transit vertices such that for any pair of distant vertices, at least
one transit vertex is included in their shortest path. Then, we compute all pairs
shortest paths of the transit vertices, and memorize them as a data structure.
When we execute the Dijkstra’s algorithm, we can directly move from the transit
vertices to the transit vertices near by the destination, thus we can save the
computation time.

In this paper, we propose a new method LMS (Levelwise Mesh Sparsification)
to the problem. The method is to construct a sparsified network based on the
geometric partition of the network. LMS considers a partition of the network
into the regions R1, ..., Rq. For each region Ri, we define the outer region Qi by
the region including Ri, and construct the sparsified network of Ri composed of
edges inside Ri and included in a shortest path connecting two vertices outside
Qi. For any two vertices outside Qi, the edges of the shortest path placing in Ri

are of the sparsified network of Ri. Thus, when we find the shortest path from
v to u, we can restrict the search to sparsified network in regions whose outer
regions include neither v nor u. Moreover, by considering regions with different
sizes, for example the rectangles whose edge is of length c · 2k for some c, we can
use larger region with more sparse network for distant vertices.

LMS is similar to highway hierarchy method in the point of constructing
levelwise (hierarchy) sparse networks. A major difference is that LMS uses ge-
ometric partition. The layered highway networks of highway hierarchy method
are connected everywhere to each other densely. In contrast to that, the spar-
sified networks of LMS are connected only at their border, thus they are not
densely connected. Moreover, it fits to geometry based operations such as the
change of the network. When the network changes, we only have to update the
regions whose outer regions include the change. Actually, the method is not an
algorithm but a way to construct a sparse network. Thus, it can adopt addi-
tional constraints, and the other modern shortest path algorithms such as A∗

algorithm and bit vector method.
To construct the semi sparsified network, we need to solve the all pairs short-

est path problem on the vertices on the boundary of the outer region. This takes
longer time than highway hierarchy method, but using the sparsified network
inside the outer region recursively, we can reduce the computation time.

This organization of this paper is as follows. Section 2 is for the definitions and
the notations. In Section 3, we explain the (semi-)sparsified network and state
some lemmas to assure the optimality. In Section 4, we explain the method to
construct the (semi-)sparsified network based on the geometric implementation.
The result of the computational experiments is shown in Section 5, and we
conclude the paper in Section 6.

2 Preliminaries

Let R+ be the set of positive real numbers. Let G = (V,A, d) be a simple directed
network: V is a vertex set, A is an edge set, d : A → R+ is a positive distance
function on edges. An ordered sequence of edges ((v1, v2), (v2, v3), . . . , (vk−1, vk))
is called a v1-vk path of G. The vertices v1 and vk are called end vertices of the
path. The length of a path is the sum of distances of all edges of the path. A
shortest s-t path is an s-t path whose length is shortest. In general the shortest
s-t path is not unique. For a given network and a query specified by a source
vertex s and a target vertex t, the s-t shortest path problem is to determine one



of the s-t shortest paths. In some context, the s-t shortest path problem requires
only the length of a s-t shortest path.

For a vertex v, let N(v) be the set of neighbors of v ∈ V defined by N(v) =
{w ∈ V | (w, v) ∈ A or (v, w) ∈ A}. Let N(S) be the set of neighbors of S ⊆ V
defined by N(S) = {N(v) | v ∈ S} \ S. The subnetwork of G induced by U ⊆ V
is denoted by G[U ]. The union of two graphs G1 and G2 is defined by the graph
whose vertex set and edge set are the union of their vertex sets, and edge sets,
respectively.

3 Sparsified Network

Let Vinner and Vouter be subsets of V satisfying Vinner ⊆ Vouter ⊆ V . Here we
define the semi-sparsified network of Vinner and Vouter.

Definition 1. A semi-sparsified network of G derived by Vinner and Vouter is
the subnetwork of G[Vinner ∪ N(Vinner)] whose each edge is on the shortest path
of G connecting two vertices not in V \ Vouter.

We denote a semi-sparsified network of G derived by Vinner and Vouter by
S′

G(Vinner, Vouter). We call the subset of vertices Vinner and Vinner inner vertices
and outer vertices of S′

G(Vinner, Vouter), respectively.

Lemma 1. All shortest paths whose both end vertices are in V \Vouter of G are
included in G[V \ Vinner] ∪ S′

G(Vinner, Vouter).

We note that a semi-sparsified network S′
G(Vinner, Vouter) is obtained by specify-

ing all shortest paths whose end vertices are in N(Vouter).
Next we define a sparsified network that is an edge contracted network of

semi-sparsified network. An edge contraction of a network G is following proce-
dures;

– if there exists v ∈ V (G) whose incident edges are (u, v), (v, w), then remove
(u, v), (v, w) and add (u,w) whose distance is d(u, v) + d(v, w),

– if there exists v ∈ V (G) whose incident edges are (u, v), (v, u), (v, w), (w, v),
then remove (u, v), (v, u), (v, w), (w, v) and add (u,w), (w, u) whose distances
are d(u, v) + d(v, w), d(w, v) + d(v, u) respectively.

We define a bridge of a semi-sparsified network S′
G(Vinner, Vouter).

Definition 2. A sparsified network of G derived by Vinner and Vouter is a mini-
mal network obtained by edge contraction except for bridges of S′

G(Vinner, Vouter)
recursively.

We denote a sparsified network of G derived by Vinner and Vouter by
SG(Vinner, Vouter). As same as the semi-sparsified networks, Vinner and Vouter are
inner vertices and outer vertices of SG(Vinner, Vouter). The statement of Lemma 1
also holds for the sparsified network in the sense of path lengths. A bridge of
(semi-) sparsified network is an edge (u, v) that [u ∈ Vinner, v /∈ Vinner] or
[u /∈ Vinner, v ∈ Vinner].

In real world road networks, roads (edges) on highways are frequently used in
the shortest paths between distant vertices, since the distance of such roads are
short in some sense. In these case, the number of edges of the sparsified network
would be much less than that of an original network, and the query time using
the sparsified networks would be reduced significantly.



For a given constant integer I, let Ui, Vi, i = 1, . . . , I be subsets of V satis-
fying

Ui ⊆ Vi ⊆ V, ∀i = 1, . . . , I,

Ui ∩ Uj = ∅, i 6= j.

Lemma 2. When s, t ∈ V \ {
∪

i Vi}, an s-t path on G is a shortest path if and
only if the path is a shortest path on G[V \ {

∪
i Ui}] ∪ {

∪
i S′

G(Ui, Vi)}, and the
statement also holds for the sparsified network in the sense of path length.

From Lemma 2, sparsified networks derived by a set partition of the original
network is also useful for shortest path queries.

In the following section, we propose a simple implementation of construct-
ing sparsified networks derived by a geometry-based partition of the original
network.

4 Geometric Implementation and Levelwise Networks

In the following, we assume that all vertices are on a 2-dimensional plain and
assume that the 2-dimensional coordinates of all vertices are given. This as-
sumption is reasonable in the context of road networks or railroad networks.
Let x(v), y(v) be the x-coordinate and the y-coordinate of v, respectively. We
call a rectangle region on the 2-dimensional plain cell. A cell is specified by
its width, height and the smallest point. Let CH(i, j) be a cell defined by
CH(i, j) = {(x, y) ∈ R2 | iH ≤ x < (i + 1)H, jH ≤ y < (j + 1)H}, where
H is a real constant. Clearly, the set of CH(i, j), ∀i, j ∈ Z is a partition of
2-dimensional plain.

4.1 Grid Based Sparsified Networks

Without loss of generality, we assume that 0 ≤ x(v), y(v) and then ∃L ∈
R, x(v), y(v) < L, ∀v ∈ V . We here suppose that H = l for some constant
l ∈ R+, Let VH(i, j) be a subset of V defined by VH(i, j) = {v ∈ V | (x(v), y(v)) ∈
CH(i, j)}. Let GH(i, j) be the subnetwork of G induced by VH(i, j)∪N(VH(i, j)).
We define the grid based sparsified network SG,H(i, j) whose inner vertex set
is VH(i, j) and whose outer vertex set is the union of VH(i′, j′) where i′ ∈
{i − 1, i, i + 1}, j′ ∈ {j − 1, j, j + 1}. In precise,

SG,H(i, j) = SG(VH(i, j), VH(i − 1, j − 1) ∪ · · · ∪ VH(i + 1, j + 1)).

Here we note that the set of vertices of GH(i, j) is the same as of SG,H(i, j).
Let GH{v} be a union of networks GH(i, j) around v ∈ V defined by GH{v} =
{GH(i− 1, j − 1)∪ · · · ∪GH(i+1, j +1) | v ∈ VH(i, j)}. Let GH{s, t} be a union
of networks GH(i, j) around s, t ∈ V defined by GH{s, t} = GH{s}∪GH{t}. We
call a sparsified network SG,H(i, j) is valid for a pair of vertices {s, t}, if both s
and t are out of outer vertices of SG,H(i, j). It means that the valid sparsified
networks for {s, t} are sufficiently far from s and t, and can be used in the
search of the shortest s-t path. Let SG,H{s, t} be a union of sparsified networks
SG,H(i, j) valid for {s,t}. From Lemma 2 the following lemma is immediate.

Lemma 3. Let s, t ∈ V . The length of the shortest s-t path on G is the same
as the length of the shortest s-t path on a network GH{s, t} ∪ SG,H{s, t}. In
particular, the shortest s-t path on G is obtained from the shortest s-t path on
GH{s, t} ∪ SG,H{s, t} with edge decontraction.



Fig. 1. An image of Theorem 1

If the size of cells H is smaller, the number of cells (that is the number of
sparsified networks) are larger, and the number of edges of sparsified networks
might be larger, and the region covered by sparsified networks are larger. Thus,
there is a trade-off between the speed of shortest path search and the size of
cells.

When a query (a source vertex and target vertex) is given, we want to use
small cells near the vertices, and we want to use large cells far from the vertices,
to use the sparsified network as much as possible. Thus, in the next section, we
consider the combination of cells of various sizes. For the conciseness, we set
the sizes of cells to 1, 2, 22, 23, . . . . Other sizes can be also considered, in future
works.

4.2 Levelwise Sparsified Networks

Here we propose levelwise sparsified network that is more efficient than the spar-
sified networks based on fixed size cells. We denote SG,2k(i, j) by Sk

G(i, j), where
k is nonnegative integer. We call sparsified networks Sk

G(i, j) level k sparsified
networks. We note that the bridges of level k sparsified networks are included
in the bridges of level k′ sparsified networks, if k′ < k. Let K be the minimum
integer satisfying 2K > L. Clearly, it is sufficient for shortest path queries to
prepare SH

G (i, j) for H = 1, ...,K. In our construction, there are K level sparsi-
fied networks (from level 0 to level K − 1) and the level K sparsified network is
empty. For a pair of vertices {s, t}, a sparsified network Sk

G(i, j) is maximal valid,
if the network is valid for s and t, and no valid sparsified network Sk+1

G (i′, j′)
of one higher level satisfy Vk(i, j) ⊆ Vk+1(bi/2c, bj/2c), that is, i = bi/2c and
j′ = bj/2c. For k = 0, 1, . . . ,K − 1, let Sk

G{s, t} be a union of really valid spar-
sified networks Sk

G(i, j) for a pair of vertices {s, t}.

Theorem 1. Let s, t ∈ V . The length of the shortest s-t path on G is the same
as the length of the shortest s-t path on a network G1{s, t}∪S0

G{s, t}∪S1
G{s, t}∪

· · · ∪ SK−1
G {s, t}.In particular, the shortest s-t path on G is obtained from the

shortest s-t path on G1{s, t} ∪ S0
G{s, t} ∪ S1

G{s, t} ∪ · · · ∪ SK−1
G {s, t} with edge

decontraction.

Figure 1 shows an image of Theorem 1. In Figure 1, the broad line is the shortest
path, and cells are corresponding to sparsified networks of various levels.
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Fig. 2. The size of the levelwise sparsified networks

We also mention to the preprocessing time to construct the levelwise spar-
sified networks. As the level of the sparsified network grows, the size of the
corresponding induced subnetwork of the original grows exponentially. A sim-
ple way to reduce the total preprocessing time is to use lower level sparsified
networks in construction of a sparsified network. To implement this idea, the
levelwise sparsified networks should be constructed in the bottom up manner.
We use this technique in our experiments presented in the following section.

5 Computational Experiments

We tested our method on the road network of the United States. The network
of the US has been obtained from the TIGER/Line Files [7]. We deal with
networks of the 50 states and the District of Columbia. Since these networks are
undirected, we interpreted the networks to bidirected networks. The number of
vertices and edges of the smallest state are 9559 and 29818, respectively. Those of
the largest are 2073870 and 5168318, respectively. In the instances, the longitude
and the latitude of each vertex are also given.

We implemented our algorithms in Java and ran all our experiments on a Mac
Pro with 3GHz Intel Xeon CUP and 2GByte RAM, running Mac OS 10.4.10.

In the preprocessing and the response for the shortest path queries, we em-
ployed the Dijkstra’s algorithm with binary heap implementation.

We fixed the minimum cell size H about 1/100 degree (that is nearly equal to
2km). When the size H is less than 1/100 degree, the level 0 sparsified networks
are very close to original networks. Actually, a cell has many vertices up to
several hundreds in downtown, but very few, say less than 10, in surburb. The
maximum level of the sparsified network of the largest state is 8.

The size (the sum of the number of edges) of the levelwise sparsified networks
are shown in Figure 2. The horizontal axis corresponds to the number of vertices
of original networks. The vertical axis corresponds to the number of edges of
levelwise networks.
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Fig. 3. The preprocessing time

From Figure 2, we can see that the whole size of the levelwise sparsified
network is slightly larger than that of original network.

The preprocessing times are shown in Figure 3. The horizontal axis corre-
sponds to the number of edges of original networks. The vertical axis corresponds
to the computational time to make the levelwise sparsified networks.

We introduce the Dijkstra rank that is defined by the number of vertices
Dijkstra’s algorithm would have to settle for that query. The Dijkstra rank is
shown in many previous works for a fairly natural measure of the difficulty of a
query. The average over 1000 random queries with Dijkstra rank of the levelwise
sparsified networks for all states are shown in Figure 4. The horizontal axis
corresponds to the number of vertices of original networks. The vertical axis
corresponds to the average Dijkstra rank.

Here the average Dijkstra rank of the levelwise sparsified network for the
largest state is about 9412.993, though that of the original network is 1024810.323.
In the case of the largest state, the average response time over 1000 queries using
the levelwise sparsified network is 36.033ms. From Figure 4, the growth of the
Dijkstra rank on levelwise sparsified networks is less than the growth of the size
of the original networks.

6 Concluding Remarks

In this paper, we address the shortest path query problem. We considered a
partition of the network based on the geometrical information and propose a
new method to sparsify the network in each region of the partition. The edges in
the sparsified network characterized by the edges included in the shortest path of
some vertices far from the region. Using regions of several sizes, the shortest path
can be obtained by combining not so many sparsified networks. The geometrical
partition makes the boundary of the regions sparse, and may help dealing with
additional constraints and updates of the network.

The implementation of our algorithm is currently straightforward. The pre-
processing phase is one of the bottle neck of our algorithm. Some sophisticated
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shortest path algorithms such as A* algorithms can improve the performance.
We can use non-square areas for the partition, such as circles. The ratio of the
areas of the outer region and the inner region can also be optimized. Sparsifica-
tion around the source vertex and target vertex, the consideration of directions,
and skewed or shifted outer region can also be considered.
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